NASA

NASA DATA SYSTEM STANDARDS PROGRAM

Next Generation Space Internet: Standards and Implementation

June 5, 2003

Keith Scott

(703) 883-6547

kscott@mitre.org

AGENDA

- Future mission requirements & assumptions
- ◆ NGSI services
- Standardization
- Implementation

Future Mission Requirements

Challenges

- Connectivity
 - ❖ Point of attachment between orbiting sensor net and the Internet changes
- Security
 - ❖ Your spacecraft is at 66.170.238.241? I always wanted my own spacecraft...
- Efficiency
 - Large data sets require efficiency, especially across the space-to-ground link

Approach

- Standardized protocols / extensions
 allowing multiple vendor implementations:
 - Security gateways
 - Advanced IP Mobility
 - ❖ Resource Reservation

Proof-of-concept implementation

• NASA DATA SYSTEM STANDARDS PROGRAM • NGSI Protocol Extensions Support for Requirements Signaling NASA FTP **FTP** Other Apps Features Key Mgmt. **MobileIP** BW Mgmt. **End-to-End** Signaling TCP **UDP** TCP **Options Per Router Actions Signaling** SCPS-SP **IPSec** between Home/Foreign **Agents** Signaling between IP **SCPS-NP** Security MobileIP **Gateways HA/FA:** encapsulation and decapsulation Bandwidth Management Link **KLS-6** June 4, 2003

Prototype Implementation

IPSEC / SCPS-SP Security Gateways

- SCPS-SP has lower overhead than IPSEC
- Trusted gateways allow
 - Logging
 - Monitoring
 - Policing
 - Transport gateways
- Standardized IKEoptions for efficientkey exchange

MobileIP with NGSI Extensions

- Standardized MobileIP
 extensions for scheduled
 operations
 - Mobile router uses IP-in-IP tunnel and MobileIP signaling across the space link a

Tunnel

Protocol Overhead

Data Delivery

Connection

Cisco Mobile Router

- Really designed for 'one-hop' mobile
 - Each mobile router supports a *fixed* mobile subnet
- Carries IP tunnel across the mobile channel

NGSI and Cisco Mobile Router Approaches

Feature	Cisco Mobile Router	NGSI
Mobile – FA Signaling (Across the space-to-ground link)	Yes – Router Solicitation / Advertisement / Mobile Registration	No – MobileIP tunnel configured ahead of time
Per-packet overhead	IP-in-IP encapsulation (20 bytes)	None
Operation in multi-hop constellation environment	Difficult for dynamic and multi-hop constellations	Yes

Internet RSVP

- Applications signal data requirements to the network
- Network responds (yes/no)
 - ❖ If yes, network provisions the path → prevents congestion loss
- Standardized RSVP extensions for protocol translating gateways

Standardization

- Few missions currently requesting IP services
- Standardizing NGSI services in CCSDS 'experimental' track
 - Feedback from space agencies and interested parties
 - Can be quickly converted to standards track when appropriate

Prototype Implementation

Standards-Based Approach to IP in Space

- Runs over anything; tested with CCSDS telemetry / telecommand links
- Open international standards:
 - Can be implemented by any vendor
 - Allow international cross-support for missions
- ◆ SCPS + NGSI Maximize Data Return
 - * High-efficiency network, security, and transport
 - ♦ End-to-end or via gateways
 - Low-overhead mobility support for spacecraft
 - * Resource reservation to prevent congestion loss

NASA

NASA DATA SYSTEM STANDARDS PROGRAM

- 1. Interplanetary Internet: An Architectural Framework for Space Internetworking: Adrian Hooke
- 2. User Data Services for Internet Based Spacecraft Applications: Joe Smith
- 3. CCSDS File Delivery Protocol (CFDP): Tim Ray
- 4. Internet Protocol Based Standards for Spacecraft Onboard Interfaces: Joe Smith
- 5. Standard Spacecraft Interfaces and IP Network Architectures: Jane Marquart
- 6. Standard Transport and Network Capabilities: Bob Durst
- 7. Next Generation Space Internet: Standards and Implementation: Keith Scott
- 8. Secure Space Networking: Howie Weiss

- 9. Delay Tolerant Networking: Scott Burleigh
- 10. CCSDS Link Layer Protocol Suite: Greg Kazz